Dr. A. R. Rao
Dr. A. R. Rao
Assistant Director General (PIM)
FNAAS, FISGPB, FSAB, FISAS
Former Professor (Bioinformatics), IARI
Principal Scientist, ICAR - IASRI
ar.rao@icar.gov.in | rao.cshl.work@gmail.com
iconpdf
Citations and H index



  • Bioinformatics and Computational Biology
  • Statistical Genetics and Genomics
  • Applied Multivariate Analysis, AS-567 (2L+1P)
  • Statistical Methods - II, AS-162 (3L+1P)
  • Statistical Genetics - I, AS-166 (3L+1P)
  • Statistical Genetics-II, AS-202 (1L+1P)
  • Advanced statistical Genetics, AS-306 (2L+1P)
  • Data Structures and Algorithms, CA-564 (2L+1P)
  • Data Analysis in Agriculture, CS-113 (1L+2P)
  • Bioinformatics-I, BI 507 / AS-571 (3L+1P)
  • Bioinformatics-II, BI 512 / AS-608 (2L+1P)
  • Introduction to Bioinformatics, BI-501 (2L+1P)
  • Computational Techniques of Transcriptomics and Metabolomics, BI-604 (1L+1P)
  • Computational Biology, BI-503 (2L+1P)
  • Acted as Research Guide to 9 Ph.D. students (5 Ph.D. Students in the Discipline of Agricultural Statistics and 4 Ph.D. Students in the Discipline of Bioinformatics ) and 7 M.Sc. Students (4 M.Sc. Students in the Discipline of Agricultural Statistics and 3 M.Sc. Students in the Discipline of Bioinformatics) of Post Graduate School, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India.

  • Acted as Member, Advisory Committee for several M.Sc. and Ph.D. students of different disciplines, viz., Agricultural Statistics, Computer Application, Genetics and Plant Breeding, Agricultural Engineering, Horticulture, Agricultural Economics, Molecular Biology and Biotechnology at Post Graduate School, IARI, New Delhi, India.

  • Consultant to National Council for Applied Economic Research (NCAER), New Delhi and provided consultancy services on "Techniques for survey data analysis and capacity building".

  1. Creating a fully characterized genetic resource pipeline for mustard improvement programme in India (PI at IASRI Centre)
  2. Elucidating the mechanism of Pashmina fibre development: An OMICS approach (PI at IASRI Centre)
  3. Bioprospecting of genes and allele mining for abiotic stress tolerance - Consortium mode project (Consortium Centre PI)
  4. Buffalo Genome Information Resources; Multi-Institutional Project with NDRI, Karnal (PI at IASRI Centre)
  5. Studying drought-responsive genes in subtropical maize germplasm and their utility in development of tolerant maize hybrids - (Under CABin Scheme) (PI at IASRI and Co-ordinating Scientist)
  6. In silico analysis of data for identification of functional alleles for stress tolerance and quality traits using Bioinformatics in potato - (Under CABin Scheme) (PI at IASRI and Co-ordinating Scientist)
  7. Whole genome association analysis in common complex diseases - An Indian initiative, a project under Centre of Excellence (PI at IASRI Centre)
  8. Computational analysis of SNPs at functional elements of rice genome (PI)
  9. Development of statistical procedures for selecting genotypes simultaneously for yield and stability (PI)
  10. Phenomics of Moisture Deficit Stress Tolerance and Nitrogen Use Efficiency in Rice and Wheat – Phase II(Co-PI at IASRI Centre)
  11. Network Project on Agricultural Bioinformatics and Computational Biology - CABin Scheme Project (Co-PI)
  12. Computational identification and modelling of genetic variation in relation to performance traits in buffaloes (Under CABin Scheme) (Co-PI and Co-ordinating Scientist)
  13. Development of database on SNPs associated with economically important traits of Indian goats - (Under CABin Scheme) (Co-PI and Co-ordinating Scientist)
  14. Development of database repertoire for Clostridium perfiringens strains prevalent in causing Enterotoxaemia in goats - (Under CABin Scheme) (Co-PI and Co-ordinating Scientist)
  15. Metagenomic applications and transcriptomes profiling for inland aquatic environmental health surveillance - (Under CABin Scheme) (Co-PI and Co-ordinating Scientist)
  16. Gene Regulatory Networks modelling for Heat Stress Responses of Source and Sink for Development of Climate Smart Wheat - (Under CABin Scheme) (Co-ordinating Scientist)
  17. Phenomics of moisture deficit and low temperature stress tolerance in rice (Co-PI)
  18. Development of Statistical Approach for Prediction of Eukaryotic Splice Sites (Co-PI)
  19. Estimation of Breeding Value using Longitudinal Data (Co-PI)
  20. Establishment of National Agricultural Bioinformatics Grid in ICAR - Consortium mode project, IASRI as Consortium Leader (Co-PI)
  21. Integrated National Agricultural Resources Information System (Co-PI)
  22. Statistical and algorithmic approach for improved estimation of treatment effects in repeated measurements designs (Co-PI)
  23. Some investigations on stable and robust clustering procedures (Co-PI)
  24. Empirical investigations on the influence of fixed effects on the estimates of heritability (Co-PI)
  25. Effect of selection and incomplete model specification on heritability estimates (Co-PI)
  26. Empirical Investigations on estimation of genetic correlation (Co-PI)

Sl. No. Authors Title Year Copyright Registration Number / Country
1. Nitesh Kumar Sharma, Dwijesh Chandra Mishra, Anil Rai, A.R. Rao, Girish Kumar Jha, Krishna Kumar, Chaturvedi, Sanjeev Kumar, and Md. Samir Farooqi Informative Gene Selection Tool (IGST) 2023 SW-18244/2024
2. Sarika Sahu, and A.R. Rao AhncRNAdb: Amaranthus hypochondriacus Noncoding RNA Database 2023 SW-17772/2023
3. Sarika Sahu, Tanmaya Kumar Sahu and A.R. Rao CLUSTERBEAN SNPS AND INDELS REPOSITORY (CBSIR) 2023 SW-16715/2023
4. Tanmaya Kumar Sahu, A.R. Rao and Anil Rai Cattle Genomic Resource Information System (CGRIS) 2022 SW-14070/2021
5. Tanmaya Kumar Sahu, Prabina Kumar Meher, and A.R. Rao Flexible length B-Cell Epitope Prediction for FMDV(FlexiBef) 2021 SW-14069/2021
6. Tanmaya Kumar Sahu, Prabina Kumar Meher, and A.R. Rao Foot and Mouth Disease Information System for Cattle (FMDISC) 2021 SW-14088/2021
7. Prabina Kumar Meher, Tanmaya Kumar Sahu, and A.R. Rao SPIDBAR: Species identification using DNA barcode 2019 SW-13040/2019
8. Prabina Kumar Meher, Tanmaya Kumar Sahu, and A.R. Rao DIRProt:Discriminating the insecticide resistance proteins from non-resistance proteins 2019 SW-12353/2019
9. Prabina Kumar Meher, Tanmaya Kumar Sahu, and A.R. Rao Ir-HSP: Online software for improved recognition of Heat Shock Proteins (HSP) and their families 2019 SW-12349/2019
10. A.R. Rao, Sarika Sahu and Jaya Pandey Cluster bean long Non-Coding RNA Database (CbLncRNAdb) 2019 SW-12348/2019
11. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao HRG Pred: Software For prediction of herbicide resistant genes 2019 SW-12347/2019
12. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao PreDoss : Prediction of donor splice sites in eukaryotic genes with improved accuracy 2019 SW-12358/2019
13. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao HSplice: A hybrid approach for predicting 5' splicing junctions 2019 SW-12357/2019
14. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao MalDoss: A web server for Donor Splice site prediction using machine learning approaches 2019 SW-12345/2019
15. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao dssPred: A web server for eukaryotic donor splice site prediction 2019 SW-12552/2019
16. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao iAMPpred: Online software for improved prediction of antimicrobial peptides 2019 SW-12549/2019
17. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao funBarRF: DNA barcode based fungal species identification 2019 SW-12551/2019
18. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao nifPred: A webserver for prediction of nitrogen fixation genes 2019 SW-12548/2019
19. Prabina Kumar Meher, Tanmaya Kumar Sahu and A.R. Rao DCDNC:Discrimination of coding sequences (CDS) from non-coding sequences(Introns) 2019 SW-12550/2019
20. Nishtha Singh, Tanmaya Kumar Sahu, A.R. Rao, T. Mohapatra shRNA Pred (Version 1.0) 2013 SW-7548/2013


  • Course Director for 21 days ICAR-Winter School on High Dimensional Genome Data Analysis during 25th November to 15th December, 2015 organized at IASRI.
  • Course Director for 10 days National Training Programme on Advanced Analytical Techniques in Bioinformatics during 10th - 19th March, 2014 under NAIP consortium project Bioprospecting of genes and allele mining for abiotic stress tolerance.
  • Course Director for 21 days ICAR-Winter School on Recent advances in quantitative genetics and statistical genomics during 06-26th November, 2012 organized at IASRI.
  • Course Director for 10 days National Training Programme on Recent advances in statistical and computational genomics data analysis during 19th - 28th March, 2012 under NAIP consortium project Bioprospecting of genes and allele mining for abiotic stress tolerance.
  • Course Director for 10 days National Training Programme on Statistical and computational genomics data analysis during 11th - 21st January, 2011 under NAIP consortium project Bioprospecting of genes and allele mining for abiotic stress tolerance.
  • Organized one day training programme on Thin client solution / High Performance Computational Cluster Computing for the 20 participants on 7th July, 2010 at IASRI.
  • Organized a 21 days Indian Council of Agricultural Research sponsored Winter School on Bioinformatics and Statistical Genomics as Course Director during 17-11-2009 to 07-12-2009.
  • Organized a 21 days training programme on Recent Advances in Biometrics as Course Director under the aegis of Centre of Advanced Studies in Agricultural Statistics and Computer Applications during 24-11-2004 to 14-12-2004.


  • Cold Spring Harbor Laboratory, New York, USA
  • University of Washington, USA

  • Inter-Departmental Nodal Officer for matters related to

    • Parliament Standing Committee Agriculture, Animal Husbandry and Food Processing
    • PM Announcements
    • Output-Outcome Monitoring Framework (OOMF)
    • DEA - E-Samiksha Portal for Budget Announcements
    • Standing Finance Committee / Expenditure Finance Committee Portal
    • Special Economic Relief Announced by Hon'ble Finance Minister
    • North Eastern Hill (NEH)
    • Scheduled Castes Sub Plan (SCSP)
    • Schedule Tribe Component (STC)
    • Sustainable Development Goals

  • ICAR – National Award for Excellence in Agricultural Research: Rafi Ahmed Kidwai Award for Outstanding Research in Agricultural Sciences – 2021 (Social Sciences)

  • ICAR - Bharat Ratna Dr. C. Subramaniam Award for Outstanding Teachers – 2019 – Awarded for outstanding teaching in Social Sciences, particularly, in the disciplines of Agricultural Statistics, Bioinformatics and Computer Applications.

  • Recognition Award (Social Sciences) – 2021: Awarded by National Academy of Agricultural Sciences (NAAS) for making distinguished contributions to the advancement of knowledge/technologies in Social Sciences including Agricultural Economics, Agricultural Statistics, Extension Education, Home Science and Bioinformatics.

  • Best Teacher Award in Higher Agricultural Education 2018-19, Awarded by ICAR-Indian Agricultural Research Institute, New Delhi.

  • Prof. P.V. Sukhatme Gold Medal - Awarded by the Indian Society of Agricultural Statistics, New Delhi

    • DBT Overseas Associateship - LongTerm (2004-2005) award was given by Department of Biotechnology, Ministry of Science & Technology, Government of India to conduct Advanced Training / Research at Overseas research laboratory in the area of Bioinformatics.

  • Fellow, National Academy of Agricultural Sciences (NAAS), New Delhi since January 2016.

  • Fellow, Indian Society of Genetics and Plant Breeding, New Delhi.

  • Fellow, Society for Applied Biotechnology, Tamil Nadu.

  • Fellow, Indian Society of Agricultural Statistics, New Delhi.

  • Senior Editorial Board Member, Scientific Reports, Nature Publishing Group, since 2019

  • Member, Editorial Board, Indian Journal of Genetics and Plant Breeding, since 2016.

  • Vice President, Indian Society of Agricultural Statistics (ISAS), New Delhi

  • Member, R&D Working Group on Industrial Applications, Ministry of Electronics and Information Technology (MeitY), Government of India, since 2021

  • Member, National Steering Committee on “National Programme on Electronics and ICT Applications in Agriculture and Environment (AgriEnIcs), Ministry of Electronics and Information Technology (MeitY), Government of India, since 2022

  • Member, ICT Steering Committee of ICAR

  • Member, Work Group, Biosafety Support Unit (BSU), DBT, MoST, GoI., 2016-17

  • Member, Special Task Force on Theoretical and Computational Biology, Department of Biotechnology (DBT), MoST, GoI. 2016-2018

  • Member, Broad Subject Matter Area (BMSA) Committee for Biotechnology & Bioinformatics, ICAR – 2018-19

  • Member, Institute Management Committee (IMC) of ICAR-Central Research Institute for Jute and Allied Fibres 2019-2020

  • Member, Institute Management Committee (IMC) of Central Institute for Cotton Research, Nagpur since 2018-2020

  • Professor (Bioinformatics), Indian Agricultural Research Institute, New Delhi during 2016-2020.

  • Dual Faculty Member and Research Guide in the disciplines of Agricultural Statistics and Bioinformatics at PG School, IARI, New Delhi, till 2020

  • Research guide (for Masters and Doctoral Degree students), Post Graduate School, Indian Agricultural Research Institute, New Delhi, India, till 2023

  • Convener, Session-V on “IoT, Big Data and Smart Agriculture”, of International Conference on Recent Advances in Agricultural Science (ICRAAS) on Theme "Innovations and Translational Research in Agriculture", organized by Amity Institute of Organic Agriculture (AIOA), on 16-17 March 2021 at NOIDA, Amity University Uttar Pradesh

  • Convener, Session V on “Application of bioinformatics and statistical tools in genetics”, 1st National Genetics Congress on Genetics for Sustainable Food, Health and Nutrition Security (December 14-16, 2018)

  • Convened as Co-Chairman, for the session on “Advances in Statistical Genetics” organized under International Conference on Statistics and Informatics in Agricultural Research held during 18-20 December, 2012, 66th Annual Conference of the Indian Society of Agricultural Statistics.

  • Convener, Bioinformatics Course committee to design courses on Bioinformatics at the Institute.

  • Co-Convener for invited paper session on sub-theme entitled “Genomic Selection and Genome wide Association Mapping” under the International Conference on “Statistics and Big Data Bioinformatics in Agricultural Research” organized at ICRISAT,Hyderabad during 21-23 November 2016.

  • Chaired a session track on Genomics at the International Conference on Bioinformatics and Systems Biology organized at Indian Institute of Information Technology, Allahabad, India during 04-06 March 2016.

  • Chaired Student’s Session-I in the 71st Annual Conference of Indian Society of Agricultural Statistics held during 25-27th November 2017 at ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur.

  • Invited as Referee for PLoS ONE, Scientific Reports, Oxford Journal - Bioinformatics, Journal of Genetics, Journal of Plant Biochemistry and Biotechnology, Interdisciplinary Sciences: Computational Life Sciences, Indian Journal of Agricultural Sciences, Indian Journal of Genetics and Plant Breeding, Journal of Indian Society of Agricultural Statistics, etc.

  • Received appreciation letter from DDG (Engineering) for the contributions made as a team member in the Data warehouse project "Integrated National Agricultural Resources Information System".

  • Convener

    Received appreciation letter from Dean, PG School, IARI for contributions made in the book "Advances in Post-Graduate Research for improving Agricultural Growth and Prosperity" (2008).

  • Received best poster award in XIV Agricultural Science Congress organized by NAAS and ICAR-IARI at NASC Complex, New Delhi during 20-23 February, 2019 for the research paper entitled “Development of bioinformatics tool for analysis of crop DNA fingerprints”.

  • Received 1st best poster award in International Conference on Statistics & Big Data Bioinformatics in Agricultural Research organized by ISAS at ICRISAT, Hyderabad during 21-23 November, 2016 for the research paper entitled “Genome Wide Mining of Microsatellites in Sesame”.

  • Received best poster award in International Conference on InterDrought-V organized by ICRISAT, Hyderabad at Hyderabad International Convention Centre, Hyderabad during 21-25,February, 2017 for the research paper “Comparison of genomic selection models for drought tolerance in sub-tropical maize”.



  • Rao, A.R. (2014). Biotechnology. Volume 6: Bioinformatics and Computational Biology. Studium Press LLC, Houstan, Texas, USA. (ISBN: 9781626990210; Number of pages: 530).
  • e-Book : Rao, A.R. An ePublication on Recent Advances in Quantitative Genetics and Statistical Genomics. [http://bioinformatics.iasri.res.in/ePublication/]

  • Sahu, S., Rao, A. R., Sahu, T.K., Pandey, J., Varshney, S., Kumar, A., and Gaikwad, K. (2024). Predictive role of cluster bean (cyamopsis tetragonoloba) derived miRNAs in human and cattle health. Genes, 15, 448. doi: 10.3390/genes15040448.

  • Mallikarjuna, M. G., Tomar, R., Lohithaswa, H. C., Sahu, S., Mishra, D. C., Rao, A. R. and Chinnusamy, V. (2024). Genome-wide identification of potassium channels in maize showed evolutionary patterns and variable functional responses to abiotic stresses. Plant Physiology and Biochemistry, 206, 108235. doi: 10.1016/j.plaphy.2023.108235.

  • Murmu, S., Chaurasia,H., Majumdar, S. G., Rao, A. R. , Rai, A., Archak S., (2023). Prediction of protein–protein interactions between anti-CRISPR and CRISPR-Cas using machine learning technique. Journal of Plant Biochemistry and Biotechnology, 32 (4), 818-830. doi: 10.1007/s13562-022-00813-1.

  • Sikka P, Singh KP, Singh I, Mishra DC, Paul SS, Balhara AK, Andonissamy J, Chaturvedi KK, Rao, A. R. and Rai A (2023). Whole blood transcriptome analysis of lactating Murrah buffaloes divergent to contrasting genetic merits for milk yield. Front. Anim. Sci., 4:1135429. doi: 10.3389/fanim.2023.1135429.

  • Gaikwad, K., Ramakrishna, G., Srivastava, H., Saxena, S., Kaila, T., Tyagi, A., Sharma, P., Sharma, S., Sharma, R., Mahla, H.R., Kumar, K., Amitha, S.V.M., Solanke, A.U., Kalia, P., Rao, A. R., Rai, A., Sharma, T.R., and Singh, N.K. (2023). The chromosome-scale genome assembly of cluster bean provides molecular insight into edible gum (galactomannan) biosynthesis family genes. Scientific Reports, 13(1), 9941.

  • Pradhan, U.K., Meher, P.K., Naha, S., Rao, A. R. and Gupta, A., 2023. ASLncR: a novel computational tool for prediction of abiotic stress-responsive long non-coding RNAs in plants. Functional & Integrative Genomics, 23(2), 113.

  • Pradhan, U.K., Meher, P.K., Naha, S., Rao, A. R., Kumar, U., Pal, S. and Gupta, A., 2023. ASmiR: a machine learning framework for prediction of abiotic stress–specific miRNAs in plants. Functional & Integrative Genomics, 23(2), 92.

  • Choudhury, N., Sahu, T.K., Rao, A. R., Rout, A.K. and Behera, B.K., 2023. An Improved Machine Learning-Based Approach to Assess the Microbial Diversity in Major North Indian River Ecosystems. Genes, 14(5), 1082.

  • Vinay ND, Matsumura, H., Munshi, A. D., Ellur, R. K., Chinnusamy, V., Singh, A., Iquebal, M. A., Jaiswal, S., Jat, G. S., Panigrahi, I., Rao, A. R., Dey, S. S. and Behera, T. K., 2023. Molecular mapping of genomic regions and identification of possible candidate genes associated with gynoecious sex expression in bitter gourd. Frontiers in Plant Science, 14, 1071648.

  • Balakumaran, M., Chidambaranathan, P., Tej Kumar JP, J.P., Sirohi, A., Kumar Jain, P., Gaikwad, K., Iyyappan, Y., Rao, A. R., Sahu, S., Dahuja, A. and Mohan, S., 2022. Deciphering the mechanism of anhydrobiosis in the entomopathogenic nematode Heterorhabditis indica through comparative transcriptomics. Plos one, 17(10), p.e0275342.

  • Sahu, T.K., Meher, P.K., Choudhury, N.K. and Rao, A. R. 2022. A comparative analysis of amino acid encoding schemes for the prediction of flexible length linear B-cell epitopes. Briefings in Bioinformatics, 23(5), p.bbac356.

  • Satpathy, S., Shahi, D., Blanchard, B., Pontif, M., Gravois, K., Kimbeng, C., Hale, A., Todd, J., Rao, A. R. and Baisakh, N., 2022. Evaluation of Models for Utilization in Genomic Prediction of Agronomic Traits in the Louisiana Sugarcane Breeding Program. Agriculture, 12(9), p.1330.

  • Aggarwal, R., Agarwal, S., Sharma, S., Gurjar, M.S., Bashyal, B.M., Rao, A. R., Sahu, S., Jain, P. and Saharan, M.S., 2022. Whole-genome sequence analysis of Bipolaris sorokiniana infecting wheat in India and characterization of ToxA gene in different isolates as pathogenicity determinants. 3 Biotech, 12(7), p.151.

  • Behera, B.K., Sahu, P., Rout, A.K., Parida, P.K., Sarkar, D.J., Kaushik, N.K., Rao, A. R., Rai, A., Das, B.K. and Mohapatra, T. (2022). Exploring microbiome from sediments of River Ganga using a metagenomic approach. Aquatic Ecosystem Health & Management, 24(4), 12-22.

  • Mallikarjuna, M. G., Sharma, R., Veeraya, P., Tyagi, A., Rao, A. R., Chandappa, L. H., & Chinnusamy, V. (2022). Evolutionary and functional characterisation of glutathione peroxidases showed splicing mediated stress responses in Maize. Plant Physiology and Biochemistry, 178, 40-54.

  • Kumar, K., Anjoy, P., Sahu, S., Durgesh, K., Das, A., Tribhuvan, K. U., Sevanthi, A.M., Joshi, R., Jain, P.K., Singh, N.K., Rao, A. R. and Gaikwad, K. (2022). Single trait versus principal component based association analysis for flowering related traits in pigeonpea. Scientific Reports, 12, 10453.

  • Meher, P.K., Begam, S., Sahu, T.K., Gupta, A., Kumar, A., Kumar, U., Rao, A. R., Singh, K.P., and Dhankher, O.P. (2022). ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo K-Tuple Nucleotide Compositional Features. International Journal of Molecular Sciences, 23, 1612.

  • Priyadarshini, S. , Arora, A., Jain, R., Marwaha, S. , Bharadwaj, A., Rao, A. R., Pal, S. (2022). Application of STUCCO Algorithm for Finding Contrast Sets for Agricultural Datasets. Journal of the Indian Society of Agricultural Statistics, 76(2), 85–92.

  • Majumdar, P. G., Rao, A. R., Kairi, A., Meher, P. K., Sahu, S. (2022). Identification of efficient learning classifiers for discrimination of coding and non-coding RNAs in plant species. Indian Journal of Genetics and Plant Breeding, 82 (3), 280-288.

  • Behera, B.K., Dehury, B., Rout, A.K., Patra, B., Mantri, N., Chakraborty, H.J., Sarkar, D.J., Kaushik, N.K., Bansal, V., Singh, I., Das, B.K., Rao, A. R. and Rai, A. (2021). Metagenomics study in aquatic resource management: Recent trends, applied methodologies and future needs. Gene Reports, 25.

  • Meher, P.K., Rai, A. and Rao, A. R. (2021). mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net. BMC Bioinformatics, 22, 342. doi:10.1186/s12859-021-04264-8.

  • Tiwari, J.K., Mandadi, N., Sridhar, J., Mandal, V., Ghosh, A., Kardile, H.B., Naga, K.C., Shah, M.A., Rawat, S., Venkateswarlu, V., Malik, K., Bhatnagar, A., Chakrabarti, S.K., Kumar, M., Rao, A. R., and Rai, A. (2021). Draft genome sequencing of the foxglove aphid (Aulacorthum solani Kaltenbach), a vector of potato viruses, provides insights on virulence genes. Journal of Asia-Pacific Entomology, 24 (2), 93-102.

  • Misra, T., Arora, A., Marwaha, S., Jha, R.R.., Ray, M., Jain, R., Rao, A. R., Varghese, E., Kumar, S., Kumar, S., Nigam, A., Sahoo, R.N., and Chinnusamy, V. (2021). Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes from Visual Images of Wheat Plants. IEEE Access, 9, 76235-76247.

  • Sankar, S.M., Singh, S.P., Prakash, G., Satyavathi, C.T., Soumya, S.L., Yadav, Y., Sharma, L.D., Rao, A. R., Singh, N. and Srivastava, R,K. (2021). Deciphering Genotype-By-Environment Interaction for Target Environmental Delineation and Identification of Stable Resistant Sources Against Foliar Blast Disease of Pearl Millet. Frontiers in Plant Science, 12:656158. doi: 10.3389/fpls.2021.656158

  • Biswas, S., Jain, R., Marwaha, S., Arora, A., Rao, A. R. and Grover, M. (2021). Selection of Feature Selection Algorithm for Categorization of Research Abstracts in Agricultural Domain.

  • Mishra, D.C., Yadav, S., Sikka, P., Jerome, A., Paul, S.S., Rao, A. R., Budhlakoti, N., Bhati, J., Singh, K.P., Balhara, A.K., Singh, I., Rai, A. and Chaturvedi, K.K. (2021). SNPRBb: economically important trait specific SNP resources of buffalo (Bubalus bubalis). Conservation of Genetic Resources, 13, 283–289 (2021). doi: 10.1007/s12686-021-01210-x

  • Tiwari, J.K., Rawat, S., Luthra, S.K., Zinta, R., Sahu, S., Varshney, S., Kumar, V., Dalamu, D., Mandadi, N., Kumar, M., Chakrabarti, S.K., Rao, A. R. and Rai, A. (2021). Genome sequence analysis provides insights on genomic variation and late blight resistance genes in potato somatic hybrid (parents and progeny). Mol Biol Rep, 48, 623–635. doi: 0.1007/s11033-020-06106-x.

  • Kumar, M., Sarangi, A., Singh, D.K., Sudhishri, S. and Rao, A. R. (2020). Wheat production functions under irrigated saline environment and foliar potassium fertigation. Current Science, 118(12), 1939-1945.

  • Sahu, T.K., Gurjar, A.K.S., Meher, P.K., Varghese, C., Marwaha, S., Rao, G.P., Rai, A., Guleria, N., Basagoudanavar, S.H., Sanyal, A., Rao, A. R. (2020). Computational insights into RNAi-based therapeutics for foot and mouth disease of Bos taurus. Sci Rep, 10:21593. doi:10.1038/s41598-020-78541-6.

  • Mallikarjuna, M.G., Thirunavukkarasu, N., Sharma, R., Shiriga, K., Hossain, F., Bhat, J.S., Mithra, A.C., Marla, S.S., Manjaiah, K.M., Rao, A. R. and Gupta, H.S. (2020). Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.). Plants, 9:1812. doi:10.3390/plants9121812.

  • Budhlakoti, N., Rai, A., Mishra, D.C., Jaggi, S., Kumar, M. and Rao, A. R. (2020). Comparative study of different non-parametric genomic selection methods under diverse genetic architecture. Indian Journal of Genetics, 80(4), 395-401.

  • Behera, B.K., Chakraborty, H.J., Patra, B., Rout, A.K., Dehury, B., Das, B.K., Sarkar, D.J, Parida,P.K., Raman, R.K., Rao, A. R., Rai, A and Mohapatra, T. (2020). Metagenomic analysis reveals bacterial and fungal diversity and their bioremediation potential from sediments of river Ganga and Yamuna in India. Frontiers in Microbiology, 11: 556136, doi: 10.3389/fmicb.2020.556136.

  • Choudhary, R. K., Sahu, T. K., Kumar, H., Rao, A. R., Choudhary, S. K. and Behera, T. K. (2020). Computational identification of putative genes and vital amino acids involved in biennial rhythm in mango (Mangifera indica L.). Journal of Pharmacognosy and Phytochemistry, 9 (6S), 267-272.

  • Behera, B.K., Patra, B., Chakraborty, H.J., Sahu, P., Rout, A.K., Sarkar, D.J., Parida, P.K., Raman, R.K., Rao, A. R., Rai, A., Das, B.K., Jena, J.K. and Mohapatra, T., 2020. Metagenome analysis from the sediment of river Ganga and Yamuna: In search of beneficial microbiome. PLoS ONE, 15(10): e0239594, doi: 10.1371/journal.pone.0239594

  • Kairi, A., Majumdar, P.G. and Rao, A. R. (2020). hAssembler: A hybrid de novo genome assembly approach for large genomes. The Indian Journal of Agricultural Sciences, 90(10), 164-169.

  • Kairi, A., Sahu, T.K. and Rao, A. R. (2020). An information system on genomic elements and predicted protein structures of buffalo (Bubalus bubalis). Indian Journal of Animal Sciences, 90(11), 1479-1484.

  • Sikka, P., Nath, A., Paul,S.S., Andonissamy,J., Mishra,D.C., Rao, A. R., Balhara, A.K., Chaturvedi,K.K., Yadav,K.K. and Balhara, S. (2020). Inferring Relationship of Blood Metabolic Changes and Average Daily Gain With Feed Conversion Efficiency in Murrah Heifers: Machine Learning Approach. Frontiers in Veterinary Science

  • Meher, P. K., Satpathy, S. and Rao, A. R. (2020). miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides. Scientific Reports, 10(1): 14557.

  • Tiwari, J.K., Buckseth, T., Devi, S., Varshney, S., Sahu, S., Patil, V.U., Zinta, R., Ali, N., Moudgil, V., Singh, R.K., Rawat, S., Duaa, V.K., Kumar, D., Kumar, M., Chakrabarti, S.K., Rao, A. R. and Rai, A. (2020). Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a nitrogen-use efficient potato cv. Kufri Gaurav. Plant Physiology and Biochemistry, 154, 171-184.

  • Misra, T., Arora, A., Marwaha, S., Chinnusamy, V., Rao, A. R., Jain, R., Sahoo, R.N., Ray, M., Kumar, S., Raju, D. and Jha, R.R. (2020). SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging. Plant Methods, 16:40.

  • Saxena, S., Sahu, S., Kaila, T., Nigam, D., Chaduvla, P.K., Rao, A. R., Sanand, S., Singh, N.K. and Gaikwad, K. (2020). Transcriptome profiling of differentially expressed genes in cytoplasmic male-sterile line and its fertility restorer line in pigeon pea (Cajanus cajan L.). BMC Plant Biology, 20:74.

  • Dasmandal, T., Rao, A. R. and Sahu, S. (2020). Identification and characterization of circular RNAs regulating genes responsible for drought stress tolerance in chickpea and soybean. Indian J. Genet., 80(1), 1-8. DOI: 10.31742/IJGPB.80.1.1

  • Sahu, S., Sahu, T.K., Ghosal, S., Gaikwad, K. and Rao, A. R. (2020). Computational analysis of SNPs and INDELs in cluster bean cultivars involved in multiple trait expression. Indian J. Genet., 80(2), 179-185.

  • Mishra, D.C., Sikka, P., Yadava, S., Bhatia, J., Paul, S.S., Jerom, A., Singh, I., Nath, A., Budhlakoti, N., Rao, A. R., Rai, A. and Chaturvedi, K.K. (2020). Identification and characterization of trait-specific SNPs using ddRAD sequencing in water buffalo. Genomics, 112(5): 3571-3578.

  • Jangid, V.K., Dixit, S., Tiwari L.D., Singh, I., Rao, A. R., and Grover, A. (2020). In silico characterization of WRKY33 TF from Sinapis alba. Indian Journal of Agricultural Sciences, 90(1), 102-106.

  • Pandey, B., Gupta, S., Rao, A. R., Pandey, D. M. and Chatrath, R. (2020). Extrapolating the effect of non-synonymous SNP in bread wheat HSP16. 9B gene: a molecular modelling and dynamics study Sinapis alba. International Journal of Bioinformatics Research and Applications, 16(1), 101-116. DOI:10.1504/IJBRA.2020.104858

  • Meher, P. K., Sahu, T. K., Gahoi, S., Satpathy, S. and Rao, A. R. (2019). Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition. Gene, 705, 113-126. DOI: 10.1016/j.gene.2019.04.047.

  • Sahu,T.K., Pradhan, D., Rao, A. R. and Jena, L. (2019). In silico site-directed mutagenesis of neutralizing monoclonal antibody 4C4 and analysis of its interaction with G-H loop of VP1 protein to explore its therapeutic applications against foot and mouth disease. Journal of Biomolecular Structure and Dynamics, 37(10), 2641-2651. DOI: 10.1080/07391102.2018.1494631.

  • Bhat, B., Singh, A., Iqbal, Z., Kaushik, J. K., Rao, A. R., Ahmad, S. M., Bhat, H., Ayaz, A., Sheikh, F.D., Kalra, S., Shanaz, S., Mir, M.S., Agarwal, P.K., Mohapatra, T. and Shanaz, S. (2019). Comparative transcriptome analysis reveals the genetic basis of coat color variation in Pashmina goat. Scientific Reports, 9(1), 6361. DOI: 10.1038/s41598-019-42676-y.

  • Meher, P.K., Sahu, T.K., Raghunandan, K., Gahoi, S., Choudhary, N.K., Rao, A.R. (2019). HRGPred: Prediction of herbicide resistant genes with k-mer nucleotide compositional features and support vector machine. Scientific Reports, 9: 778. DOI:10.1038/s41598-018-37309-9.

  • Jerome, A., Bhati, J., Mishra, D.C., Chaturvedi, K.K., Rao, A.R., Rai, A., Sikka, P. and Singh, I. (2019). MicroRNA-related markers associated with corpus luteum tropism in buffalo (Bubalus bubalis). Genomics, 112(1), 108-113, DOI:10.1016/j.ygeno.2019.01.018.

  • Meher, P.K., Sahu, T.K., Gahoi, S., Tomar, R., Rao, A.R. (2019). funbarRF: DNA barcode-based fungal species prediction using multiclass Random Forest supervised learning model. BMC Genetics, 20:2. DOI: 10.1186/s12863-018-0710-z.

  • Dalal, M., Sahu, S., Tiwari, S., Rao, A.R. and Gaikwad, K. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130, 482-492, DOI: 10.1016/j.plaphy.2018.07.035.

  • Purru, S., Sahu, S., Rai, S., Rao, A.R. and Bhat, K.V. (2018). GinMicrosatDb: a genome-wide microsatellite markers database for sesame (Sesamum indicum L.). Physiology and Molecular Biology of Plants, DOI: 10.1007/s12298-018-0558-8.

  • Prajapat, R.K., Singh, P., Tiwari, P., Mainkar, P., Sahu, S., Rao, A.R. and Kansal, R. (2018). In Silico Analysis and Molecular Docking Studies of Cajanus cajan Lectin against Aminopeptidase-N Receptor from Acyrthosiphon pisum. International Journal of Current Microbiology and Applied Sciences, 7(06), 959-967. DOI: 10.20546/ijcmas.2018.706.114.

  • Sahu, S., Rao, A. R., Pandey, J., Gaikwad, K., Ghoshal, S. and Mohapatra, T. (2018). Genome-wide identification and characterization of lncRNAs and miRNAs in cluster bean (Cyamopsis tetragonoloba). Gene, 667, 112-121, DOI: 10.1016/j.gene.2018.05.027

  • Mittal, S., Banduni, P., Mallikarjuna, M.G., Rao, A.R., Jain, P.A., Dash, P. and Nepolean, T. (2018). Structural, functional and evolutionary characterization of major drought transcription factors families in maize. Frontiers in Chemistry: Agricultural Biological Chemistry, DOI: 10.3389/fchem.2018.00177

  • Meher, P.K., Sahu, T.K., Mohanty, J., Gahoi, S., Purru, S., Grover, M. and Rao, A.R.(2018). nifPred: Proteome-wide identification and categorization of nitrogen-fixation proteins of diaztrophs based on composition-transition-distribution features using support vector machine. Frontiers in Microbiology: Evolutionary and Genomic Microbiology. DOI: 10.3389/fmicb.2018.01100

  • Supriya, P., Rao, A.R. and Bhat, K.V.(2018). Transcriptome sequencing of sesame (Sesamum indicum) using Illumina Platform.Indian Journal of Agricultural Sciences, 88 (3): 442-446.

  • Kumar, M., Sarangi, A., Singh, D.K. and Rao, A.R.(2018). Modelling the grain yield of wheat in irrigated saline environment with foliar potassium fertilization. Agricultural Research, 7(3), 321-337. DOI: 10.1007/s40003-018-0310-1

  • Junaid, A., Kumar, H.,Rao, A.R., Patil, A.N., Singh, N.K. and Gaikwad, K. (2018). Unravelling the epigenomic interactions between parental inbreds resulting in an altered hybrid methylome in Pigeonpea. DNA Research. DOI: 10.1093/dnares/dsy008

  • Meher, P.K., Sahu, T.K., Gahoi, S. and Rao, A.R. (2018). ir-HSP: Improved recognition of heat shock proteins, their families and sub-types based on g-spaced di-peptide features and support vector machine. Frontiers in Genetics: Bioinformatics and Computational Biology. DOI: 10.3389/fgene.2017.00235

  • Mittal, S., Mallikarjuna, M.G., Rao, A.R., Jain, P.A., Dash, P.K. and Nepolean, T. (2017). Comparative analysis of CDPK family in maize, Arabidopsis, rice and sorghum revealed potential targets for drought tolerance improvement. Frontiers in Chemistry: Agricultural Biological Chemistry, 5: 115, DOI: 10.3389/fchem.2017.00115

  • Arora, K., Panda, K. K., Mittal, S., Mallikarjuna, M. G., Rao, A.R., Dash, P. K., and Nepolean, T.(2017). RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Scientific Reports, 7, 10950. DOI: 10.1038/s41598-017-10561-1

  • Van Gioi, H., Mallikarjuna, M. G., Shikha, M., Pooja, B., Jha, S. K., Dash, P. K., Basappa, A.M., Gadag, R.N., Rao, A.R. and Nepolean, T.(2017). Variable Level of Dominance of Candidate Genes Controlling Drought Functional Traits in Maize Hybrids. Frontiers in Plant Science, 8, 940. DOI: 10.3389/fpls.2017.00940.

  • Chandel, G., Dubey, M., Gupta, S., Patil, A.H. and Rao, A.R. (2017). Identification and characterization of a grain micronutrient-related OsFRO2 rice gene ortholog from micronutrient-rich little millet (Panicum sumatrense). 3 Biotech., 7(1):80. DOI: 10.1007/s13205-017-0656-2.

  • Aravind, J., Rinku, S., Pooja, B., Shikha, M., Kaliyugam, S., Mallikarjuna, M. G., Kumar, A., Rao, A.R. and Nepolean, T. (2017). Identification, Characterization, and Functional Validation of Drought-responsive MicroRNAs in Subtropical Maize Inbreds. Frontiers in Plant Science, 8, 941. DOI: 10.3389/fpls.2017.00941.

  • Meher, P.K. and Rao, A. R.. (2017). A Non-parametric Regression based Computational Approach for Prediction of Donor Splice Sites. The Journal of Indian Society of Agricultural Statistics, 71(2), 159-166.

  • Meher, P.K., Sahu, T.K., Bancharia, A. and Rao, A.R.(2017). DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins.BMC Bioinformatics 18:190, DOI: 10.1186/s12859-017-1587.

  • Meher, P.K., Sahu, T.K., Saini, V. and Rao, A.R.(2017). Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC.Scientific Reports 7:42362, DOI: 10.1038/srep42362.

  • Mittal, S., Arora, K., Rao, A.R., Mallikarjuna, M., Gupta, H.S. and Thirunavukkarasu, N.(2017). Genomic selection for drought tolerance using genome-wide SNPs in maize. Frontiers in Plant Science 8:550. DOI: 10.3389/fpls.2017.00550.

  • Thirunavukkarasu, N., Sharma, R., Singh, N., Shiriga, K., Mohan, S., Mittal, S., Mittal, S., Mallikarjuna, M.G., Rao, A.R., Dash,P.K., Hossain, F. and Gupta, H.S.(2017). Genomewide Expression and Functional Interactions of Genes under Drought Stress in Maize.International Journal of Genomics 2017, Article ID 2568706, 14 pages, doi:10.1155/2017/2568706.

  • Kumar, S., Ambreen, H., Variath, M.T., Rao, A.R., Agarwal, M., Kumar, A., Goel, S. and Jagannath, A.(2016). Utilization of Molecular, Phenotypic, and Geographical Diversity to Develop Compact Composite Core Collection in the Oilseed Crop, Safflower (Carthamus tinctorius L.) through Maximization Strategy. Frontiers in Plant Science 7:1554, DOI:10.3389/fpls.2016.01554.

  • Meher, P.K., Sahu, T.K., Rao, A.R. and Wahi, S.D.(2016). Discriminating coding from non-coding regions based on codon structure and methylation-mediated substitution: An application in rice and cattle Computers and Electronics in Agriculture 129, 66-73, DOI:10.1016/j.compag.2016.09.013.

  • Srivastava, R., Bajaj, D., Sayal, Y.K., Meher, P.K., Upadhyaya, H.D., Kumar, R., Tripathi, S., Bharadwaj, C., Rao, A.R. and Parida, S.K.(2016). Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea. Plant Science 252, 374-387, DOI:10.1016/j.plantsci.2016.08.013.

  • Jaiswal, V., Gahlaut, V., Meher, P.K., Mir, R.R., Jaiswal, J.P., Rao, A.R., Balyan, H.S. and Gupta, P.K.(2016). Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.). PLoS ONE 11(7): e0159343. DOI:10.1371/journal.pone.0159343.

  • Gupta,S., Singh, Y., Kumar, H., Raj, U., Rao, A.R., Varadwaj, P.K.(2016). Identification of Novel Abiotic Stress Proteins in Triticum aestivum Through Functional Annotation of Hypothetical Proteins. Interdisciplinary Sciences: Computational Life Sciences, DOI:10.1007/s12539-016-0178-3.

  • Meher, P.K., Sahu, T.K., Rao, A. R.(2016). Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier. Gene, 592(2), 316-324, DOI: 10.1016/j.gene.2016.07.010.

  • Meher, P.K., Sahu, T.K., Rao, A. R., Wahi, S.D.(2016). A computational approach for prediction of donor splice sites with improved accuracy.Journal of Theoretical Biology, 404, 285-294, DOI: 10.1016/j.jtbi.2016.06.013.

  • Meher, P.K., Sahu, T.K., Rao, A. R., Wahi, S.D.(2016). Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features. Algorithms for Molecular Biology, 11:6, DOI: 10.1186/s13015-016-0078-4.

  • Meher, P.K., Sahu, T.K. and Rao, A. R. (2016). Prediction of donor splice sites using random forest with a new sequence encoding approach. BioData Mining, 9:4, DOI: 10.1186/s13040-016-0086-4.

  • Badoni, S., Das, S., Sayal, Y.K., Gopalakrishnan, S., Singh, A.K., Rao, A. R., Agarwal, P., Parida, S.K., Tyagi, A.K.(2016). Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice. Scientific Reports, 6: 23765, DOI: 10.1038/srep23765.

  • Mallikarjuna, M.G., Nepolean, T., Mittal, S., Hossain, F., Bhat, J.S. , Manjaiah, K.M., Marla, S., Mithra, A.C.R., Agrawal, P.K., Rao, A. R., Gupta, H.S.(2016). In-silico characterisation and comparative mapping of yellow stripe like transporters in five grass species. The Indian Journal of Agricultural Research, 86(5), 621-627.

  • Tiwari, S., Krishnamurthy, S.L., Kumar, V., Singh, B., Rao, A. R., Mithra, S.V.A., Rai, V., Singh, A.K., Singh, N.K. (2016). Mapping QTLs for Salt Tolerance in Rice (Oryza sativa L.) by Bulked Segregant Analysis of Recombinant Inbred Lines Using 50K SNP Chip. PLOS ONE, 11:4, DOI: 10.1371/journal.pone.0153610.

  • Ganeshan, P., Jain, A., Parmar, B., Rao, A. R., Sreenu, K., Mishra, P., Mesapogu, S., Subrahmanyam, D., Ram, T., Sarla, N., Rai, V. (2016). Identification of salt tolerant rice lines among interspecific BILs developed by crossing Oryza sativa × O. rufipogon and O. sativa × O. nivara. Australian Journal of Crop Science, 10:2, 220-228.

  • Meher, P.K., Sahu, T.K., Rao, A. R.(2016). Performance evaluation of neural network, support vector machine and random forest for prediction of donor splice sites in rice The Indian Journal of Genetics and Plant Breeding, 76:2, 173-180.

  • Behera, T.K., Rao, A. R., Amarnath, R., Kumar, R.R. (2016). Comparative transcriptome analysis of female and hermaphrodite flower buds in bitter gourd (Momordica charantia L.) by RNA sequencing. The Journal of Horticultural Science and Biotechnology, 91:3, 250-257.

  • Choudhary, R.K., Rao, A. R., Wahi, S.D., Misra, A.K. (2016). Detection of biennial rhythm and estimation of repeatability in mango (Mangifera indica L.). The Indian Journal of Genetics and Plant Breeding, 76:1, 88-97.

  • Kumar, M., Sarangi, A., Singh, D.K., Rao, A. R., Sudhishri, S. (2016). Response of wheat cultivars to foliar potassium fertilization under irrigated saline environment. Journal of Applied and Natural Science, 8:1, 429-436.

  • Chandel, G., Dubey, M., Rao, A. R., Gupta, S. and Patil, A. (2016). Identification and characterization of rice ortholog of ferric chelate reductase (FRO2) gene in little millet (Panicum sumatrense). Indian Journal of Biotechnology, 15(3), 433-436.

  • Behera, B. k., Baisvar, V. S., Kumari, K., Rout, A. K., Pakrashi, S., Paria, P., Das, A., Rao, A. R. and Rai, A. (2016). The complete mitochondrial genome of the Asian stinging catfish, Heteropneustes fossilis (Siluriformes, Heteropneustidae) and its comparison with other related fish species. Mitochondrial DNA Part B, 1(1), 804-805. DOI:10.1080/23802359.2016.1219628

  • Gupta, S., Rao, A. R., Varadwaj, P., De, S. and Mohapatra, T. (2015). Extrapolation of inter domain communications and substrate binding cavity of Camel HSP70 1A: A molecular modeling and dynamics simulation study. PLOS ONE, 10(8):e0136630. DOI:10.1371/journal.pone.0136630.

  • Behera, B.K., Baisvar, V.S., Kumari, K., Rout, A.K., Pakrashi, S., Paria, P., Rao, A.R. and Rai, A. (2015). The complete mitochondrial genome of the Anabas testudineus (Perciformes, Anabantidae) and its comparison with other related fish species. Mitochondrial DNA, DOI:10.3109/19401736.2015.1115490.

  • Bardhan, S.R., Rao, A. R., Meher, P.K., Marwaha, S. and Wahi, S.D. (2015). Identification of a suitable clustering method and allocation strategy for core set development in salt stress tolerant rice germplasm. Indian Journal of Agricultural Sciences, 85(12), 1560-1564.

  • Mishra, S., Behera, T.K., Munshi, A.D., Bharadwaj, C. and Rao, A. R. (2015). Inheritance of gynoecism and genetics of yield and yield contributing traits through generation mean analysis in bitter gourd. Indian Journal of Horticulture, 72 (2), 218-222.

  • Maibam, A., Tyagi, A., Satheesh, V., Mahato, A.K., Jain, N., Raje, R.S., Rao, A. R., Gaikwad, K., Singh, N.K. (2015). Genome-wide identification and characterization of heat shock factor genes from pigeonpea (Cajanus cajan). Molecular Plant Breeding, 6 (7), 1-11. http://dx.doi.org/10.5376/mpb.2015.06.0007

  • Sarkar, R.K., Rao, A. R., Meher, P.K., Nepolean, T. and Mohapatra, T. (2015). Evaluation of Random Forest regression for prediction of breeding value from genome-wide SNPs. Journal of Genetics, 94, 187-192, DOI: 10.1007/s12041-015-0501-5.

  • Kumar, V., Singh, A., Mithra, S.V.A., Krishnamurthy, S.L., Parida, S.K., Jain, S., Tiwari, K.K., Kumar, P., Rao, A. R., Sharma, S.K., Khurana, J.P., Singh, N.K. and Mohapatra, T. (2015). Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Research, 22(2), 133-145. DOI: 10.1093/dnares/dsu046, 1-13.

  • Tiwari, K.K., Singh, A., Pattnaik, S., Sandhu, M., Kaur, S., Jain, S., Tiwari, S., Mehrotra, S., Anumalla, M., Samal, R., Bhardwaj, J., Dubey, N., Sahu, V., Kharshing, G.A., Zeliang, P.K., Sreenivasan, K., Kumar, P., Parida, S.K., Mithra, S.V.A., Rai, V., Tyagi, W., Agarwal, P.K., Rao, A. R., Pattanayak, A., Chandel, G., Singh, A.K., Bisht, I.S., Bhat, K.V., Rao, G.J.N., Khurana, J.P., Singh, N.K. and Mohapatra, T. (2015). Identification of a diverse mini-core panel of Indian rice germplasm based on genotyping using microsatellite markers. Plant Breeding , 134(2), 164-171, DOI: 10.1111/pbr.12252.

  • Gupta,S., Jadaun,A., Kumar,H., Raj,U., Varadwaj,P.K. and Rao, A. R. (2015). Exploration of new drug like inhibitors or serine/threonine protein phosphatase 5 of Plasmodium falciparum: A docking and simulation study, Journal of Biomolecular Structure and Dynamics, 33(11), 2421-2441, DOI: 10.1080/07391102.2015.1051114.

  • Sahu, T.K., Rao, A. R., Meher, P.K., Sahoo, B.C., Gupta, S. and Rai, A. (2015). Computational prediction of MHC class I epitopes for most common viral diseases in cattle (Bos taurus). Indian Journal of Biochemistry and Biophysics, 52, 34-44.

  • Behera,B.K., Das, P., Maharana, J., Paria, P., Mandal, S., Meena, D., Sharma, A., Jayarajan, R., Dixit, V., Verma, A., Vellarikkal, S., Scaria, V., Sivasubbu, S., Rao, A. R. and Mohapatra, T. (2015). Draft Genome Sequence of the extremely halophilic Bacterium Halomonas salina sp. Strain CIFRI1 isolated from East Coast of India. Genome Announcements, 3(1):e01321-14., DOI:10.1128/genomeA.01321-14, DOI:10.1128/genomeA.00123-15.

  • Behera, B.K., Das, P., Maharana, J., Meena, D.K., Sahu, T.K., Rao, A. R., Chatterjee, S., Mohanty, B.P., Sharma, A.P. (2015). Functional Screening and Molecular Characterization of Halophilic and Halotolerant Bacteria by 16S rRNA Gene Sequence Analysis. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(4), 957-964, DOI: 10.1007/s40011-014-0440-6.

  • Meher, P.K., Sahu, T.K., Rao, A. R. and Wahi, S.D. (2015). Determination of window size and identification of suitable method for prediction of donor splice sites in rice (Oryza sativa) genome. Journal of Plant Biochemistry and Biotechnology, 24(4), 385-392, DOI: 10.1007/s13562-014-0286-2.

  • Sarkar, R.K., Meher, P.K., Wahi, S.D., Mohapatra, T. and Rao, A. R. (2015). An approach to the development of a core set of germplasm using a mixture of qualitative and quantitative data. Plant Genetic Resources, Characterization and Utilization; 13(2),96-103, DOI:10.1017/S1479262114000732.

  • Meher, P.K., Rao, A. R., Wahi, S.D. and Thelma, B.K. (2014). An approach using random forest methodology for disease risk prediction using imbalanced case-control data in GWAS. Current Medicine Research and Practice, 4, 289-294.

  • Meher, P.K., Sahu, T.K., Rao, A. R. and Wahi, S.D. (2014). A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data. BMC Bioinformatics, 15:362 DOI:10.1186/s12859-014-0362-6

  • Sahu, T.K., Rao, A. R., Dora, S., Gupta, S. and Rai, A. (2014). In silico identification of late blight susceptibility genes in Solanum tuberosum. Ind. J. Genet., 74(2), 229-237.

  • Barat, A., Goel, C., Sahoo, P.K. and Rao, A. R. (2014). Development of expressed sequence tags (ESTs) from the brain tissue of snowtrout Schizothorax richardsonii (Gray, 1832) (Family Cyprinidae) and its preliminary annotation. Indian J. Fish., 61(2), 118-128.

  • Meher, P.K., Sahu, T.K., Rao, A. R. and Wahi, S.D. (2014). Application of Gibbs sampling methodology for identification of transcription factor binding sites in MADS box family genes in Arabidopsis thaliana. Ind. J. Genet., 74(1), 73-80.

  • Rao, A. R., Dash, M., Sahu, T.K., Wahi, S.D., Behera, B.K., Sharma, A.P. and Bhatia, V.K. (2014). Statistical and bio-computational applications in animal sciences. Ind. J. Anim. Sci., 84(5); 475-489.

  • Rao, A. R., Dash, M., Sahu, T.K., Behera, B.K. and Mohapatra, T. (2014). Detection of novel key residues of Mn SOD enzyme and its role in salinity management across species. Journal of Genetics Online Resources, 93, e8-e16.

  • Satyavathi, C. T., Sapna, T., Bharadwaj, C., Rao, A. R., Bhat, J and Singh, S.P. (2013). Genetic Diversity Analysis in a Novel Set of Restorer Lines of Pearl Millet [Pennisetum glaucum (L.) R. Br] Using SSR Markers. Vegetos, 26 (1), 72-82.

  • Patil, J.P., Sarangi, A., Singh, D.K., Chakraborty, D., Rao, A. R. and Dahiya, S. (2013). Rainfall trend analysis: A case study of Pune district in western Maharashtra region. Journal of Soil and Water Conservation, India, 12(1), 35-43.

  • Rao, A. R., Sahu TK, Singh N. (2013). Spliceomics: The OMICS of RNA splicing. In Barh D, Zambare V, Azevedoet V OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences. CRC Press, Taylor & Francis Group, LLC, USA. Catalog No: K15973, ISBN: 9781466562813, 201-224.

  • Singh N, Sahu TK,Rao, A. R. , Mohapatra T. (2012). shRNAPred (version 1.0): An open source and standalone software for short hairpin RNA (shRNA) prediction. Bioinformation, 8(13): 629-633.

  • Sahu TK, Rao, A. R. , Vasisht S, Singh N and Singh UP. (2012). Computational Approaches, Databases and Tools for in silico Motif Discovery. Interdisciplinary Sciences: Computational Life Sciences, 4, 239-255.

  • Dash, S., Wahi, S.D. and Rao, A. R. (2012). Classification of maize genotypes by artificial neural network based method: Self Organizing Feature Map, Indian Journal of Agricultural Sciences, 82(2), 162-163.

  • Sarkar, R.K., Rao, A. R. , Wahi, S.D. and Bhat, K.V. (2012). Performance of clustering procedures for grouping germplasms based on mixture data with missing observations. Indian Journal of Agricultural Sciences, 82(12), 1055-1058.

  • Sarkar, R,Rao, A. R., Wahi, S.D. and Bhat, K.V. (2011). A comparative performance of clustering procedures for mixture of qualitative and quantitative data - an application to blackgram. Plant Genetic Resources: Characterization and Utilization, 9(4), 523-527.

  • Wahi, S.D. and Rao, A. R. (2011). Some investigations on sampling variance of genetic correlation. The IUP Journal of Genetics and Evolution, 4(2), 27-44.

  • Sahu TK, Rao, A. R., Singh, A., Behera BK, and Mohapatra, T. (2011). In silico identification of residues for anoxia tolerance across species. Online Journal of Bioinformatics. 12(1):175-197.

  • Rao, A. R., Choudhary, SK, Wahi, SD and Prabhakaran, VT. (2010). An index for simultaneous selection of genotypes for high yield and stability under incomplete genotype x environment data. Ind. J. Genet., 70(1), 80-84.

  • Meher, P.K., Rao, A. R., Wahi, S.D. and Jaggi, N. (2010). Detection of multivariate outliers in breeding data. International Journal of Statistics and Systems, 4, 527-535.

  • Varghese,C., Rao, A. R. and V.K. Gupta (2009). Optimal change over designs under treatment x unit interaction. International Journal of Applied Mathematics and Statistics, 14(J09), 27-34.

  • Sharma, A., Varghese, C. and Rao, A. R. (2009). Software for the analysis of repeated measurements designs. Ind. J.Anim. Sci., 79(4), 445-448.

  • Wahi, S.D., Dash, S and Rao, A. R. (2009). An empirical investigation on classical clustering methods. The Icfai University Journal of Genetics & Evolution, 2(3), 74-79.

  • Choudhary, S.K., Rao, A. R., Wahi, S.D. and Prabhakaran, V.T. (2009). Performance of simultaneous selection index against missing observations in genotype x environment data. Icfai University Journal of Genetics & Evolution, 2(4), 36-42.

  • Rao, A. R., Wahi, S.D. and Bhatia, V.K. (2009). Statistical applications in breeding and genetics. IASRI an era of excellence, Indian Agricultural Statistics Research Institute Publication , New Delhi, 139-159.

  • Roca,X., Olson,A.J., Rao, A. R., Enerly,E.R., Kristensen,V.N., Dale,A.B., Anderson, B.S., Krainer,A.R. & Schidanandam,R. (2008). Features of 5' splice site efficiency derived from disease causing mutations and comparative genomics. Genome Research. 18, 77-87.

  • Prabhakaran, V.T. and Rao, A. R. (2008). A New Approach to the Estimation of Variance of Sample Heritability from Full-Sib Analysis. J. Indian Soc. Agric. Statist. 62, 208-213.

  • Sahoo,N., Rajput,T.B.S. and Rao, A. R. (2008). Geomorphological Parameters Based Watershed Sediment Yield Estimation. Journal of Agricultural Engineering, 45(1), 47-56.

  • T.K.Behera, J.E.Staub, S.Behera, Rao, A. R. and S.Manson. (2008). One cycle of phenotypic selection combined with marker assisted selection for improving yield and quality in cucumber. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae (Pitrat M, ed), INRA, Avignon (France), 115-121.

  • V.K.Bhatia, Prajneshu, Rajendra Parsad, Seema Jaggi, Anil Rai and Rao, A. R. (2008). Agricultural Statistics. Advances in Post-Graduate Research for improving Agricultural Growth and Prosperity, Post Graduate School, IARI, New Delhi. 349-364.

  • Wimmer,K., Roca, X., Beiglbock, H., Etzler, J., Rao, A. R., Krainer, A.R., Fonatsch, C. and Massiaen, L. (2007). Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice site disruption. Human Mutation, 28(6), 599-612.

  • Rao, A. R. and Prabhakaran,V.T. (2007). Simultaneously selection of cultivars for yield and stability in crop improvement trials, Ind. J. Genet., 67(2), 161-165.

  • Ramesh, K., Rao, A. R., Prabhakaran,V.T., Selvi,A. and Mohapatra,T. (2007). Comparative evaluation of clustering techniques for establishing AFLP based genetic relationship among sugarcane cultivars. J. Indian Soc. Agric. Statist., 61 (1), 51-65.

  • Sharma, A., Varghese, C., Rao, A. R., Gupta, V.K. and Pal, S. (2007). SPRMD - A statistical package for cataloguing and generation of repeated measurements designs. J. Indian Soc. Agric. Statist., 61(1), 84-90.

  • Thomas,G., Mohapatra,T., Rao, A. R. and Sharma,R.P. (2006). Distinguishing Indian commercial wheat varieties using RAPD based DNA fingerprints. Indian Journal of Biotechnology, 5, 200-206.

  • Sarika, Wahi S. D and Rao, A. R. (2006). A Study on the robustness of estimate of genetic correlation. Ind. J. Animal Sciences 76(9): 759-763.

  • Wahi, S. D. Bhatia, V. K. and Rao, A. R. (2006). Study of statistical properties of genetic correlation using bootstrap technique. Ind. J. Animal Sciences 76(9): 755-758.

  • Sarika, Wahi, SD and Rao, A. R. (2006). Effect of outliers on the estimates of genetic correlation. The Indian Journal of Animal Genetics and Breeding, 27(1,2),17-21.

  • Prasad, P., Tiwari, A.K., Kumar, K.M.P., Ammini, A.C., Gupta, A., Gupta, R., Sharma, A.K., Rao A. R., Nagendra, R., Chandra, T.S., Tiwari, S.C., Gupta, B.L. and Thelma, B.K. (2006). Chronic renal insufficiency among Asian Indians with type 2 diabetics: I. Role of RAAS gene polymorphisms. BMC Medical Genetics, 7:42.

  • Rao, A. R. and Prabhakaran, V.T. (2005). Use of AMMI in simultaneous selection of genotypes for yield and stability. The Journal of Indian Society of Agricultural Statistics, 59(1), 76-82.

  • Rao, A. R. , Varghese, C. and Sharma, V.K. (2005). Robustness of repeated measurements design, Indian Journal of Dairy Science, 58 (4), 281-286.

  • Singh,N.O. Rao, A. R., Wahi, S.D. and Singh,V.P. (2005). Robustness of bootstrap estimates of variance of heritability to master samples in half-sib analysis. The Indian Journal of Animal Genetics and Breeding, 27(1,2), 6-11.

  • Wahi, S. D. and Rao, A. R. (2005). Empirical investigations on the estimation of heritability in presence of non-genetic fixed effects under half-sib mating designs. The Indian Journal of Animal Genetics and Breeding, 26(1,2), 31-40.

  • Tiwari, A.K., Deshpande, S.N., Rao, A. R. , Bhatia, T., Mukhit, S.R., Sriharsh, V., Lerer, B., Nimagaonkar, V.L. and Thelma, B.K. (2005). Genetic susceptibility to Tardive Dyskinesia in chronic schizophrenia subjects: I. Association of CYP1A2 gene polymorphism. The Pharmacogenomics Journal, 5, 60-69.

  • Deshpande, S.N., Varma, P.G., Semwal, P., Rao, A. R., Bhatia, T., Nimgaonkar, V.L., Lerer, B. and Thelma, B.K. (2005). Serotonin Receptor Gene Polymorphisms and their association with Tardive Dyskinesia among schizophrenia patients from north India. Psychiatric Genetics, 15(3), 157-158.

  • Tiwari, A. K., Deshpande, S. N., Rao, A. R., Bhatia, T., Lerer, B., Nimgaonkar, V. L. and Thelma, BK (2005). Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophrenia research, 75(1), 21-26. DOI:10.1016/j.schres.2004.12.011

  • Sahoo, N., Rajput, T.B.S., Rao, A. R. and Behera, D. (2005). Estimation of watershed sediment yield through geomorphological parameters.Technical Manual, 46th Session of The Institution of Engineers India (India), 149-156.

  • Kumar, S., Rao, A. R. and Bhatia, V.K. (2004). Bayesian estimation of heritability in animal breeding experiments under 2-way nested classification. The Journal of Indian Society of Agricultural Statistics, 58(3), 352-62.

  • Kiran, P.S., Bhatia, V.K. and Rao, A. R. (2004). Robust method of estimation of heritability. Jour. Ind. Soc. of Agricultural Statistics, 57, 116-128.

  • Varghese, C., Sharma, V.K. and Rao, A. R. (2003). Optimality of circular change-over designs balanced for first and second residuals. Utilitas Mathematica, 64, 281-287.

  • Kiran, P.S., Bhatia, V.K. and Rao, A. R. (2003). Sampling distributions of heritability. Jour. Ind. Soc. of Agricultural Statistics, 56, 294-301.

  • Sahoo, N., Rajput, T.B.S., Rao, A. R. and Bhattacharya, A.K. (2003). Estimation of watershed run off through geomorphological parameters.Jour. Soil and Water Conservation, India. 2(1&2), 16-26.

  • Mishra, S., Gupta, Y.C. and Rao, A. R.(2003). Correlation and path coefficient studies in Carnation. Jour. OrnamentalHorticulture, 6(1), 24-28.

  • Rao, A. R. and Prabhakaran, V.T. (2002). Empirical investigation on non-linear genotype x environment interactions applied to vegetable crops. The Indian Journal of Agricultural Science, 72(5), 277-280.

  • Varghese, C., Rao, A. R. and Sharma, V.K. (2002). Robustness of Williams Square change-over designs, Metrika, 55 (3), 199-208.

  • Rao, A. R. and Prabhakaran, V.T. (2001). A bootstrap method of estimating heritability from varietal trial data. Indian J. Genet. 61(2), 87-91.

  • Rao, A. R. and Kumar, S. (2001). Bayesian estimation of heritability using Gibbs sampling for half-sib mating design, Indian Journal of Applied Statistics, 6, 12-26.

  • Wahi, S.D. and Rao, A. R. (2001). Estimation of variance of repeatability estimators for perennial crops, Indian Journal of Applied Statistics, 6, 57-62.

  • Rao, A. R. and Prabhakaran, V.T. (2000). On some useful interrelationships among common stability parameters. Indian J. Genet. 60(1), 25-36.

  • Ansari, J., Prabhakaran, V.T. and Rao, A. R. (1999). A bootstrap - variance approach to the choice of best mating design for heritability estimation. Indian Journal of Applied Statistics. 5, 29-40.

  • Rao, C.H., Rao, A. R. and Sharma, V.K. (1998). Response fertilizer ratios of food grains and oil seeds in India.IASRI publication.